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Unified approach to the analogues of single-photon and 
multiphoton coherent states for generalized bosonic oscillators 

P Shantat, S Chaturvedits, V SrinivasantII and R Jagannathantv 
t School of Physics, University of Hyderabnd, Hyderabad-500134, India 
t The Institute of Mathematical Sciences, CIT Campus, Thmmani, Madms-600113. India 

Received 23 May 1994 

Abstract. A large clas of bosonic coherent States known in literature have been constructed in 
a unified way by Shanta er ol. It is shown that this method can be easily extended to generalized 
bosonic-oscillator systems. 

1. Introduction 

An aspect of the theory of quantum groups is the notion of deformed, or generalized, 
bosonic oscillators. These generalized bosonic oscillator (GBO) systems have the potential 
to be useful in describing physical phenomena in which anharmonicity effects are sufficiently 
large. This motivates the study of GBO coherent states which would naturally take the place 
of the usual bosonic coherent states in applications. As has been often recognized by several 
authors in the literature. any GBO algebra can be presented in the form 

I N ,  a+] = at [ N , a ]  = -a at, = @ ( N )  .at = r$(N + 1) (1.1) 
where a,  at and N are, the annihilation, creation and excitation number operators, 
respectively, and the real non-negative function @ ( N )  (@(n) 2 0 V n > 0) characterizes the 
given system. For the usual boson @ ( N )  = N ,  the q-oscillators [1-13], the ( p .  q)-oscillator 
[14-16] and the various other single-mode deformed bosons [ 17-21] and parabosons [22- 
251 correspond to special cases of algebra (l.l), each characterized by a @ ( N ) .  We assume 
that system (1.1) has a unique vacuum state 10) such that a10) = 0, NIO) = 0 and the 
spectrum of N is taken to be IO, 1,2 , .  . .). Then, r$(N)IO) = @(O)[O) = 0 and, throughout 
this paper, we shall assume that @ ( N )  > 0 V n =- 0. For any GBO, the specific commutation 
relation connecting a,  at and N is derived from the recursion relation for @ ( N ) .  Following 
the construction [2] of the coherent state for the q-oscillator with aat -qat, = q-N,  there 
have been many studies on the q-coherent states [26-341. The main purpose of this article 
is to construct the analogues of the single-photon and multiphoton coherent states for the 
GBO system (1.1) in a unified way. We do this by a straightforward application of the 
technique that has been developed recently [35] for constructing a large class of bosonic 
coherent states known in literature in a unified way. To this end, we use the fact that for 
any GBO (1.1), one can define [IO, 11,221 a pair of operators (A, At) such that 

[A,a t ]  = 1 [a,At] = 1 a t A  = A t , =  N .  ( 1 .a 
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Explicitly, 

As should be expected, the pairs (a. At) and ( A ,  Q') in the bosonic realization are related 
to the bosonic operators (b, bt)  through a similarity transformation. Hence, the formulae 
for the multiphoton coherent states are readily translated into their analogues for the GBO 
(1.1). 

2. Multiphoton coherent states: A r&umG 

Let us recall briefly the recently developed general method for the construction of 
multiphoton coherent states [35]. Let F be an operator consisting of products of annihilation 
operators (b) and number operators (N). For each mode [ b , b t ]  = I ,  [ N , b ]  = -b, 
[ N ,  bt] = bt and N = btb. Let [ lu) t l i  = 0, 1,2, .  ..) be the set of states which are 
annihilated by F :  Flu)(  = 0, i = 0, 1,2,. , . , If GI is an operator satisfying the relation 

[ F ,  Gj] = 1 

la); e x p ( a ~ j ) l v ) ;  i = I ,  2 , .  . . (2.2) 

(2.1 ) 

in the space S, of states spanned by the set Si = {Ft"lu)iIn = I ,  2 , .  . .). then the states 

are seen to be distinct eigenstates of F with eigenvalue a, provided they have finite norms. 
The operator Gi = (Gj)t consists precisely of the annihilation operators present in F and, 
hence, Gilv)(  = 0, i = 1,2,, , . , Consequently, one has 

[Gi, F t ]  = 1 (2.3) 

in the space St and the states 

- exp(aFt)lv), i = I ,  2, . 

are, respectively, the eigenstates of G, with eigenvalue a. 
For example, let F = bZ. We have Iv ) l  = IO), Iv)z = 11). Then, with SI and 

& denoting the spaces spanned by the sets of states SI = (I2n)ln = 0. 1.2, . . .} and 
Sz = (I2n + I)ln = 0, 1,2, . . . I  

are such that 

Hence, 

(2.5) 
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are two distinct eigenstates of b2 corresponding to the eigenvalue a (for details of the 
procedure for constructing the operators { G j )  t for a given F ,  see [351) and 

la); - exp(abt2)10) [a); - exp(abt2)/1) (2.8) 

are. respectively, the eigenstates of G I  = m b 2  1 and Gz = &b’ corresponding to the 

As another example. let F = btb2 where (bl. bj) and (b,. b,) t are two commuting pairs 
eigenvalue a. 

of bosonic operators. Now, the distinct ( I u ) ~ )  and the appropriate S, are 

The corresponding (Gf} are 

The eigenstates of blbz are, with m > 0, 

The eigenstates of {Gj)  are, respectively, with m > 0, 

(2.10) 

(2.1 1) 

(2.12) 

The squeezed vacuum, Yuen, pair coherent, Caves-Schumaker and other non-classical states 
can be identified among the states constructed above (see [35] for details). 

It is clear, from the given examples, that the above procedure can be generalized to 
obtain the eigenstates of F corresponding to three or more bosons. This method is also 
applicable for constructing the eigenstates of linear combinations of F and Ft, such as the 
squeezed coherent states. One can also use this method to get the thermal counterparts of 
the various states like the squeezed states, pair coherent states etc (see [35] for details). 
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3. Analogue of the single-photon coherent state for a GBO 

For any GBO ( 1 . 1 )  characterized by a @ ( N )  with $ ( N )  z 0, V n > 1, onc can write 

in terms of the bosonic operators (b ,  bt). This follows from the Fock representation of 
algebra (1.1)- in which one can take, with a unique 10) and @(n)  > 0 V n > 0, 

aj0) = 0 

ajn) = m~n - I )  

Njn) = njn) n = 0,1,2, . . . 

(3.2) 
a'ln - 1) = m l n )  n = 1.2, ... 

where q5(n)! = q5(n)q5(n - I )  ...4(2)q5(1) and 4(0)! = 1. Hence, in the bosonic Fock 
space, the operator pairs (a, A') and (A,  at), defined by (1.2) and (1.3). have the realization 

a = TbT-' At  = TbtT-I A = T-'bT at = T-'btT 

(3.3) 

At, = atA = btb = N .  

This similarity relation between (b, bt), (a, A t )  and (A ,  at) in the bosonic Fock space 
implies that in any algebraic relation involving (b. bt), valid in the bosonic Fock space or 
a subspace thereof, one can replace b and bt by a and A t  (or A and ut), respectively, and 
the resulting relation will be valid in the corresponding GBO Fock spaces. For example, 
the relation [b ,  exp(abt)l = aexp(abt), valid in the entire bosonic Fock space, can be 
translated into the relations [a, exp(aAt)] = acexp(aAt) and [A, exp(aat)] = aexp(aat), 
valid in the entire GBO Fock space. Hence, the annihilation-operator eigenstates for the GBO 
[IO, 11,221 are seen to be given by 

such that a la)  = ala). Similarly, one can also define for the CBO an eigenstate of A: the 
state 

(3.5) 

is such that Ala)' = alrr)'. The completeness relation for the coherent states in this case 
becomes 
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Proof of relation (3.6) follows by referring it to the boson realization and using the similarity 
transformation (3.3). For the usual boson, the two states lor) and lor)' coincide. It may also 
be noted that if the 1n)'s in (3.4) and (3.5) are interpreted as the usual bosonic number states 
then la) and lor)' are, respectively, the eigenstates of the bosonic operators 

and 

satisfying the relations IF, Gt] = 1 and [G, F t ]  = 1. 

exponential, which, in general, can be defined by 
The coherent state for a GBO is usually defined [Z, 26-34] in terms of a generalized 

(3.7) 

It is such that 

D+exp+(orx) = aexpm(ax)  with D+f(x) = -@ x-  f ( x )  (3.8) 

where Do is the generalized derivative, or the @-derivative, operator. Then, the eigenstate 
of a is given by 

f ( sax) 

(3.9) 

Comparison of (3.4) and (3.9) shows the equivalence of the two definitions of the eigenstates 
of a. Similarly, the state lor)' defined above as the eigenstate of A can be written as 

(3.10) 

with the pair (A, At) corresponding to aGBO. The GBOS corresponding to (a, a t )  and (A, At) 
may be regarded as a pair of 'mutually-conjugate' GBOs with their respective characteristic 
functions @ ( N )  and @ ( N )  satisfying the relation @@ = NZ; the usual boson is a 'self- 
conjugate oscillator' ! 

N2 
with @ ( N )  = AtA = _. 

@(N) 
la)' - exp,(orAt)lO) 

Some examples of GBOS are given in table 1 with 



There are several other GBO algebras in the literature (see, e.g., [17-191). It may be noted 
that algebra (6)  in table 1 is the same as the algebra of a single-mode paraboson of order g, 
usually presented in terms of a triplecommutation relation. It is interesting that this algebra 
(6)  has been recently recognized as being associated with the two-particle Calogero model 
(see [21] for details). The algebras (7-9) correspond to deformed parabosons. 

As already mentioned in the introduction, the commutation relation connecting a, at 
and N depends on the recursion relation for $ ( N ) .  In general, this commutation relation 
can be written in the form 

aut - c (N)a+a  = G(N) (3.11) 

where I ( N )  and G(N) are functions of N and the deformation parameter(s). In [18], several 
GBOs have been considered in a unified way, taking < ( N )  to be independent of N .  However, 
to include GBOS like the q-parabose oscillators (see (7 and 9) in the above list) in such a 
unified picture, one has to consider a relation of the type (3.1 I). The relation connecting 
:(A'), G ( N )  and $(N) is, with $(O) = 0, 

$(n)  = F(n - l)! for n 1. 
k=O 

(3.12) 

Let us now consider the construction of the coherent states of the GBO (10) in the above 
list, as an example of the formalism detailed above. Equation (3.4) readily gives the result. 
The eigenstate of a in this case is 

From (3.5). it follows that 

(3.13) 

(3.14) 

is the eigenstate of the corresponding 
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The Bargmann-Fock realization of the GBO-algebra is obtained by the map 
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a 1 

a2 Z 
a t = z  N = z -  a = -+ ( z i j  (3.15) 

in the space of analytic functions of the complex variable z. The inner-product which makes 
( a ,  a t )  Hermitian conjugates in this realization is 

(3.16) 

and the functions ( z n / m l n  = 0,1,2, . . .) form a complete orthonormal set with respect 
to this inner-product. Thus, with the correspondence In) + z " / m ,  in the Bargmann- 
Fock realization, the coherent state has the representation 

For the realization of ( A ,  A t ) ,  one has 

The state /E)' is given by 

as is obvious from the realization A = 8/82. 
For the GBO (IO), in the Bargmann-Fock realization, we have 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

which is a q-deformed version of the modified Bessel function 20(2&). By definition, 
I/Ja(z) in (3.20) satisfies the eigenvalue equation 

In the limit q + 1. the Gso-algebra (10) becomes the classical su(1, 1) algebra (U -+ K - ,  
at --+ K, ,  N --f KO - 4) and, hence, the states 

(3.22) 

may be recognized as a q-generalization of the Barut-Girardello su(l ,  1) coherent 
states [36]. 
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4. Analogues of the multiphoton coherent states for a GBO 

Analogues of the multiphoton coherent states for a CBO can be obtained by the same 
procedure as above, namely, replacing (b, bt, N ) ' s  by (a ,  A', N ) ' s  and (A,  at, N ) ' s .  As 
the first example, let us consider the construction of the eigenstates of 7 = a'. Then, 
following the above argument, we see, from (2.5),  that 

N 
2 @ ( N ) @ ( N  - I ) a t z  

Atz = 1 
" = 2 ( N  - 1) 

and 

are such that 

1 ~ , @ 1 1 2 n )  = 12n)  [F, & l ~ n  + I )  = 12n + 1 )  n = o ,  1.2, .... (4 .3)  
Hence, it follows that 

are two distinct eigenstates of a* corresponding to the eigenvalue a. The eigenstates of 

and 

are, respectively, 

ICY); - exp(olat2)10) la); - exp(aat2)11). 

If we take 3 = A2, then, by the same arguments, one has that 
(4 .5)  

are two distinct eigenstates of A2 with eigenvalue a and where 

are the eigenstates of &az and h a ' ,  respectively, with eigenvalue a. 
Extending the above procedure to the GBO analogues of the other two-photon coherent 

states, we get the results summarized in the table 2 with (a , ,  ai) and (az. a;) corresponding 
to two commuting GBOS. 

The GBO analogues of the various multiphoton coherent states like the squeezed vacuum, 
h e n ,  pair coherent, Caves-Schumaker and other non-classical states can be identified 
among the states constructed above. In table 2,  one can replace (at, az) in F with ( A I ,  Az), 
respectively, and vice versa, and construct the corresponding eigenstates by replacing 

representation of (a. at), one can also interpret the above GBO states as non-classical states 
of the usual bosonic field. 

(A, ,  t t  A2) by (al, t t  +). respectively, and vice versa. As already mentioned, using the bosonic 
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Table 2. Deformed multimode coherent states. 

F eigenstates 

5. Conclusion 

To conclude. we have presented a general unified formalism for obtaining the analogues of 
the single-photon and the various multiphoton coherent states in the case of a GBO (for a 
different approach to multimode q-coherent states see [37]). To this end, we have used the 
similarity relation that exists between the annihilation (creation) operators of the GBO and 
the usual bosonic oscillator to apply the technique developed recently [35] for obtaining the 
large class of bosonic coherent states known in the literature in a unified way. 
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